Kamali Kaveh, Akbari Ali Akbar, Desrosiers Christian, Akbarzadeh Alireza, Otis Martin J.-D. et Ayena Johannes C.. (2020). Low-rank and sparse recovery of human gait data. Sensors, 20, (16), p. 1-13.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5). 1MB |
URL officielle: http://dx.doi.org/doi:10.3390/s20164525
Résumé
Due to occlusion or detached markers, information can often be lost while capturing human motion with optical tracking systems. Based on three natural properties of human gait movement, this study presents two different approaches to recover corrupted motion data. These properties are used to define a reconstruction model combining low-rank matrix completion of the measured data with a group-sparsity prior on the marker trajectories mapped in the frequency domain. Unlike most existing approaches, the proposed methodology is fully unsupervised and does not need training data or kinematic information of the user. We evaluated our methods on four different gait datasets with various gap lengths and compared their performance with a state-of-the-art approach using principal component analysis (PCA). Our results showed recovering missing data more precisely, with a reduction of at least 2 mm in mean reconstruction error compared to the literature method. When a small number of marker trajectories is available, our findings showed a reduction of more than 14 mm for the mean reconstruction error compared to the literature approach.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
Volume: | 20 |
Numéro: | 16 |
Pages: | p. 1-13 |
Version évaluée par les pairs: | Oui |
Date: | 23 Juin 2020 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie électrique et génie électronique Sciences naturelles et génie > Génie > Génie informatique et génie logiciel |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | human gait, recovery, low-rank matrix completion, group-sparsity, missing data, démarche humaine, récupération, complétion de matrice de bas rang, la rareté du groupe, données manquantes |
Déposé le: | 23 sept. 2020 20:48 |
---|---|
Dernière modification: | 23 sept. 2020 20:48 |
Éditer le document (administrateurs uniquement)