Shaopeng Li, Snaiki Reda et Teng Wu. (2021). A knowledge‐enhanced deep reinforcement learning‐based shape optimizer for aerodynamic mitigation of wind‐sensitive structures. Computer-Aided Civil and Infrastructure Engineering, p. 1-14.
Prévisualisation |
PDF
- Version soumise
2MB |
URL officielle: http://dx.doi.org/doi:10.1111/mice.12655
Résumé
Structural shape optimization plays an important role in the design of wind‐sensitive structures. The numerical evaluation of aerodynamic performance for each shape search and update during the optimization process typically involves significant computational costs. Accordingly, an effective shape optimization algorithm is needed. In this study, the reinforcement learning (RL) method with deep neural network (DNN)‐based policy is utilized for the first time as a shape optimization scheme for aerodynamic mitigation of wind‐sensitive structures. In addition, “tacit” domain knowledge is leveraged to enhance the training efficiency. Both the specific direct‐domain knowledge and general cross‐domain knowledge are incorporated into the deep RL‐based aerodynamic shape optimizer via the transfer‐learning and meta‐learning techniques, respectively, to reduce the required datasets for learning an effective RL policy. Numerical examples for aerodynamic shape optimization of a tall building are used to demonstrate that the proposed knowledge‐enhanced deep RL‐based shape optimizer outperforms both gradient‐based and gradient‐free optimization algorithms.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
Pages: | p. 1-14 |
Version évaluée par les pairs: | Oui |
Date: | 2021 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie civil Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | structure sensible, forme structurelle, performance aérodynamique, évaluation numérique, modèle mathématique, processus d'optimisation, apprentissage par renforcement |
Déposé le: | 17 mars 2021 22:55 |
---|---|
Dernière modification: | 17 mars 2021 22:55 |
Éditer le document (administrateurs uniquement)