Chehri Abdellah, Fofana Issouf et Yang Xiaomin. (2021). Security risk modeling in smart grid critical infrastructures in the era of big data and artificial intelligence. Sustainability, 13, (6), p. 3196.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5). 9MB |
URL officielle: http://dx.doi.org/doi:10.3390/su13063196
Résumé
Smart grids (SG) emerged as a response to the need to modernize the electricity grid. The current security tools are almost perfect when it comes to identifying and preventing known attacks in the smart grid. Still, unfortunately, they do not quite meet the requirements of advanced cybersecurity. Adequate protection against cyber threats requires a whole set of processes and tools. Therefore, a more flexible mechanism is needed to examine data sets holistically and detect otherwise unknown threats. This is possible with big modern data analyses based on deep learning, machine learning, and artificial intelligence. Machine learning, which can rely on adaptive baseline behavior models, effectively detects new, unknown attacks. Combined known and unknown data sets based on predictive analytics and machine intelligence will decisively change the security landscape. This paper identifies the trends, problems, and challenges of cybersecurity in smart grid critical infrastructures in big data and artificial intelligence. We present an overview of the SG with its architectures and functionalities and confirm how technology has configured the modern electricity grid. A qualitative risk assessment method is presented. The most significant contributions to the reliability, safety, and efficiency of the electrical network are described. We expose levels while proposing suitable security countermeasures. Finally, the smart grid’s cybersecurity risk assessment methods for supervisory control and data acquisition are presented.
Déposé le: | 17 mars 2021 23:05 |
---|---|
Dernière modification: | 17 août 2021 12:56 |
Éditer le document (administrateurs uniquement)