Quadar Nordine, Chehri Abdellah et Jeon Gwanggil. (2020). Visual analytics methods for eye tracking data. Dans Alfred Zimmerman, Robert J. Howlett et Lakhmi C. Jain (dir.), Human centred intelligent systems. (p. 3-12). Smart Innovation, Systems and Technologies. Singapore : Springer.
Le texte intégral n'est pas disponible pour ce document.
URL officielle: http://dx.doi.org/doi:10.1007/978-981-15-5784-2_1
Résumé
Nowadays, eye tracking data have become important and valuable information that help to understand the behavior of users. The gathering of these data is not an issue anymore. However, the problem is the analysis process and especially how can these raw data be converted to understandable and useful information. Visual analytics can solve this issue by combining human analytics skills and the advanced computer analytics. This leads to the novel discoveries and helps humans take control of the analytical process. These visualizations can be used to solve difficult problems by discovering new unknown patterns of available data. In this work, we discussed different methods that are used in the case of eye tracking data, and we addressed the challenges of visual analytics in this context.
Type de document: | Chapitre de livre |
---|---|
Date: | 30 Mai 2020 |
Lieu de publication: | Singapore |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie informatique et génie logiciel Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Éditeurs: | Zimmerman, Alfred Howlett, Robert J. Jain, Lakhmi C. |
Liens connexes: | |
Mots-clés: | big data, visual analytics, eye tracking techniques, future internet, analyse visuelle, techniques de suivi oculaire, Internet du futur, Proceedings |
Déposé le: | 18 mai 2021 16:48 |
---|---|
Dernière modification: | 18 mai 2021 16:48 |
Éditer le document (administrateurs uniquement)