Asadollahi Siavash, Jafari Reza et Farzaneh Masoud. (2016). Effect of HMDSO flow rate in nitrogen atmospheric plasma on the superhydrophobic characteristics of organosilicon-based coatings. Dans : 2016 IEEE International Conference on Plasma Science (ICOPS) , 19-23 June 2016, Banff, AB, Canada.
Le texte intégral n'est pas disponible pour ce document.
URL officielle: http://dx.doi.org/doi:10.1109/PLASMA.2016.7534027
Résumé
Summary form only given. An atmospheric pressure plasma reactor is used to generate a superhydrophobic surface using nitrogen as the ionization gas and hexamethyldisiloxane (HMDSO) as the monomer. A total of 14 different flow rates ranging from 3 gr/h to 70 gr/h are chosen for plasma polymerization in order to study the wetting behavior of the coatings along with their chemical composition and morphological structure.Static contact angle measurement shows an increase in contact angle up to a point, after which it remains relatively constant as the flow rate is increased. FTIR results show that by increasing the HMDSO injection rate into the plasma, the intensity of both Si-O-Si band and Si-C bands increases. While silicon oxide is a hydrophilic function, it is responsible for the dendrite-like structure that is necessary for low wetting behavior. Si-C bands, on the other hand, are indicative of the presence of organic functions on the surface which are responsible for lowering the surface energy. In order to study the mechanism under which the superhydrophobic structure evolves, developed surfaces using 6 different flow rates (3, 5, 10, 15, 30 and 70 gr/h) were studied using scanning electron microscopy. The results show that the superhydrophobic dendrite-like structure may be the outcome of particle agglomeration caused by increasing the flow rate. At flow rates close to the end limit in this experiment (70 gr/h), these agglomerates form a white silicon dioxide powder which is mechanically unstable and can be easily removed from the surface. Thus, it can be suggested that a middle ground exists, where the flow rate is high enough for silicon oxide to form a nano roughened structure while maintaining the presence of organic functions on the surface. The method introduced here is a relatively cheap, fast and environmentally friendly procedure which can be used in various applications, such as self-cleaning or icephobic surfaces.
Type de document: | Matériel de conférence (Non spécifié) |
---|---|
Date: | 8 Août 2016 |
Lieu de publication: | Piscataway, NJ |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Laboratoire des revêtements glaciophobes et ingénierie des surfaces (LaRGIS) |
Liens connexes: | |
Mots-clés: | contact angle, Fourier transform infrared spectra, hydrophilicity, hydrophobicity, ionisation, nitrogen, organic compounds, plasma devices, plasma flow, plasma materials processing, polymerisation, scanning electron microscopy, silicon compounds, surface energy, surface treatment, wetting, Proceedings, angle de contact, spectres infrarouges à transformée de Fourier, hydrophilie, hydrophobie, ionisation, azote, composés organiques, dispositifs plasma, flux plasma, traitement des matériaux plasma, polymérisation, microscopie électronique à balayage, composés de silicium, énergie de surface, traitement de surface, mouillage, proceedings |
Déposé le: | 15 juin 2021 19:33 |
---|---|
Dernière modification: | 06 oct. 2021 19:49 |
Éditer le document (administrateurs uniquement)