El Aswad Fadwa, Tchane Djogdom Gilde Vanel, Otis Martin J.-D., Ayena Johannes C. et Meziane Ramy. (2021). Image Generation for 2D-CNN Using Time-Series Signal Features from Foot Gesture Applied to Select Cobot Operating Mode. Sensors, 21, (17), p. 5743.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5). 20MB |
URL officielle: http://dx.doi.org/doi:10.3390/s21175743
Résumé
Advances in robotics are part of reducing the burden associated with manufacturing tasks in workers. For example, the cobot could be used as a “third-arm” during the assembling task. Thus, the necessity of designing new intuitive control modalities arises. This paper presents a foot gesture approach centered on robot control constraints to switch between four operating modalities. This control scheme is based on raw data acquired by an instrumented insole located at a human’s foot. It is composed of an inertial measurement unit (IMU) and four force sensors. Firstly, a gesture dictionary was proposed and, from data acquired, a set of 78 features was computed with a statistical approach, and later reduced to 3 via variance analysis ANOVA. Then, the time series collected data were converted into a 2D image and provided as an input for a 2D convolutional neural network (CNN) for the recognition of foot gestures. Every gesture was assimilated to a predefined cobot operating mode. The offline recognition rate appears to be highly dependent on the features to be considered and their spatial representation in 2D image. We achieve a higher recognition rate for a specific representation of features by sets of triangular and rectangular forms. These results were encouraging in the use of CNN to recognize foot gestures, which then will be associated with a command to control an industrial robot.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
Volume: | 21 |
Numéro: | 17 |
Pages: | p. 5743 |
Version évaluée par les pairs: | Oui |
Date: | 26 Août 2021 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie informatique et génie logiciel Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | human–robot collaboration, instrumented insole, foot gesture recognition, convolutional neural network, collaboration homme-robot, semelle instrumentée, reconnaissance des gestes du pied, réseau de neurones convolutifs |
Déposé le: | 31 août 2021 20:41 |
---|---|
Dernière modification: | 31 août 2021 20:41 |
Éditer le document (administrateurs uniquement)