Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Image Generation for 2D-CNN Using Time-Series Signal Features from Foot Gesture Applied to Select Cobot Operating Mode

El Aswad Fadwa, Tchane Djogdom Gilde Vanel, Otis Martin J.-D., Ayena Johannes C. et Meziane Ramy. (2021). Image Generation for 2D-CNN Using Time-Series Signal Features from Foot Gesture Applied to Select Cobot Operating Mode. Sensors, 21, (17), p. 5743.

[thumbnail of Image Generation for 2D-CNN Using Time-Series Signal.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5).

20MB

URL officielle: http://dx.doi.org/doi:10.3390/s21175743

Résumé

Advances in robotics are part of reducing the burden associated with manufacturing tasks in workers. For example, the cobot could be used as a “third-arm” during the assembling task. Thus, the necessity of designing new intuitive control modalities arises. This paper presents a foot gesture approach centered on robot control constraints to switch between four operating modalities. This control scheme is based on raw data acquired by an instrumented insole located at a human’s foot. It is composed of an inertial measurement unit (IMU) and four force sensors. Firstly, a gesture dictionary was proposed and, from data acquired, a set of 78 features was computed with a statistical approach, and later reduced to 3 via variance analysis ANOVA. Then, the time series collected data were converted into a 2D image and provided as an input for a 2D convolutional neural network (CNN) for the recognition of foot gestures. Every gesture was assimilated to a predefined cobot operating mode. The offline recognition rate appears to be highly dependent on the features to be considered and their spatial representation in 2D image. We achieve a higher recognition rate for a specific representation of features by sets of triangular and rectangular forms. These results were encouraging in the use of CNN to recognize foot gestures, which then will be associated with a command to control an industrial robot.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:21
Numéro:17
Pages:p. 5743
Version évaluée par les pairs:Oui
Date:26 Août 2021
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie informatique et génie logiciel
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:human–robot collaboration, instrumented insole, foot gesture recognition, convolutional neural network, collaboration homme-robot, semelle instrumentée, reconnaissance des gestes du pied, réseau de neurones convolutifs
Déposé le:31 août 2021 20:41
Dernière modification:31 août 2021 20:41
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630