Chehri Abdellah, Zimmermann Alfred, Zoungrana Wend-Benedo et Ezzaidi Hassan. (2021). Rotating Machinery Condition Monitoring Using Time Series Analysis of Vibration Signal. Dans Human Centred Intelligent Systems. (244, p. 232-242). Smart Innovation, Systems and Technologies book series (SIST, volume 244). Singapore : Springer.
Le texte intégral n'est pas disponible pour ce document.
URL officielle: http://dx.doi.org/10.1007/978-981-16-3264-8_22
Résumé
Rotating machinery occupies a predominant place in many industrial applications. However, rotating machines are often encountered with severe vibration problems. The measurement of these machines’ vibrations signal is of particular importance since it plays a crucial role in predictive maintenance. When the vibrations are too high, they often cause fatigue failure. They announce an unexpected stop or break and, consequently, a significant loss of productivity or an attack on the personnel’s safety. Therefore, fault identification at early stages will significantly enhance the machine’s health and significantly reduce maintenance costs. Although considerable efforts have been made to master the field of machine diagnostics, the usual signal processing methods still present several drawbacks. This paper examines the rotating machinery condition monitoring in the time and frequency domains. It also provides a framework for the diagnosis process based on machine learning by analyzing the vibratory signals.
Type de document: | Chapitre de livre |
---|---|
Date: | 2021 |
Lieu de publication: | Singapore |
Identifiant unique: | 10.1007/978-981-16-3264-8_22 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie informatique et génie logiciel Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | time-series classification, SVM, K-nearest neighbor, decision trees, naive bayes, predictive maintenance, industry 4.0, classification de séries temporelles, K plus proche voisin, arbres de décision, bayes naïfs, maintenance prédictive, industrie 4.0 |
Déposé le: | 27 avr. 2022 15:19 |
---|---|
Dernière modification: | 27 avr. 2022 15:19 |
Éditer le document (administrateurs uniquement)