Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

A Cognitive Radio Spectrum Sensing Implementation Based on Deep Learning and Real Signals

Saber Mohamed, Chehri Abdellah, Rharras Abdessamad El, Saadane Rachid et Wahbi Mohammed. (2021). A Cognitive Radio Spectrum Sensing Implementation Based on Deep Learning and Real Signals. Dans Innovations in Smart Cities Applications Volume 4. (183, p. 930-941). Lecture Notes in Networks and Systems book series (LNNS, volume 183). Cham : Springer.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/10.1007/978-3-030-66840-2_70

Résumé

In a cognitive radio environment, spectrum sensing is an essential phase for improving spectrum resources management. Based on a deep learning method and real signals, a new spectrum sensing implementation is proposed in this work. The real signals are artificially generated, using an ARDUINO UNO card and a 433 MHz wireless transmitter, in ASK and FSK modulation types. The reception interface is constructed using an RTL-SDR receiver connected to MATLAB software. The signals classification is carried out by a convolutional neural network (CNN) classifier. Our proposed model’s main objective is to identify the spectrum state (free or occupied) by classifying the received signals into a licensed user (primary user) signals or noise signals. Our proposed model’s performance evaluation is evaluated by two metrics: the probability of detection (Pd) and the false alarm probability (PFA). Finally, the proposed sensing method is compared with other used techniques for signal classification, such as energy detection, artificial neural network, and support vector machine. The experimental results show that CNN could classify the real signals better than traditional methods and machine learning methods.

Type de document:Chapitre de livre
Date:2021
Lieu de publication:Cham
Identifiant unique:10.1007/978-3-030-66840-2_70
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie informatique et génie logiciel
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:cognitive radio network, spectrum sensing, CNN, RTL-SDR, ASK-FSK signals, réseau radio cognitif, détection de spectre, signaux ASK-FSK
Déposé le:28 avr. 2022 12:37
Dernière modification:28 avr. 2022 12:37
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630