Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Traffic Signs Detection and Recognition System in Snowy Environment Using Deep Learning

Chehri Hamou, Chehri Abdellah et Saadane Rachid. (2021). Traffic Signs Detection and Recognition System in Snowy Environment Using Deep Learning. Dans Innovations in Smart Cities Applications Volume 4. (183, p. 503-513). Lecture Notes in Networks and Systems book series (LNNS, volume 183). Cham : Springer.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/10.1007/978-3-030-66840-2_38

Résumé

A fully autonomous car does not yet exist. But the vehicles have continued to gain in range in recent years. The main reason? The dazzling progress made in artificial intelligence, in particular by specific algorithms, known as machine learning. These example-based machine learning methods are used in particular for recognizing objects in photos. The algorithms developed for the detection and identification must respond robustly to the various disturbances observed and take into account the variability in the signs’ appearance. Variations in illumination generate changes in apparent color, shadows, reflections, or backlighting. Besides, geometric distortions or rotations may appear depending on the viewing angle and the panels’ scale. Their appearance may also vary depending on their state of wear and possible dirt, damage. In this work, to improve the accuracy of detection and classification of sign road partially covered by snow, we use the Fast Region-based Convolutional Network method (Fast R-CNN) model. To train the detection model, we collect an image dataset composed of multi-class of road signs. Our model can simultaneously multi-class of a road sign in nearly real-time.

Type de document:Chapitre de livre
Date:2021
Lieu de publication:Cham
Identifiant unique:10.1007/978-3-030-66840-2_38
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie informatique et génie logiciel
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:deep learning, automatic classification, traffic sign, detection, apprentissage profond, classification automatique, panneau de signalisation, détection
Déposé le:28 avr. 2022 12:30
Dernière modification:28 avr. 2022 12:30
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630