Jeon Gwanggil, Abdellah Chehri, Cuomo Salvatore, Din Sadia et Jabbar Sohail. (2021). Special issue on real‐time behavioral monitoring in IoT applications using big data analytics. Concurrency and Computation: Practice and Experience, 33, (4), e5529.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5). 409kB |
URL officielle: http://dx.doi.org/10.1002/cpe.5529
Résumé
Real-time social multimedia level threat monitoring is becoming harder, due to higher and rapidly increasing data induction. Data induction through electric smart devices is greater compared to information processing capacity. Nowadays, data becomes humongous even coming from the single source. Therefore, when data emanates from all heterogeneous sources distributed over the globe makes data magnitude harder to process up to a needed scale. Big data and Deep learning have become standard in providing well-known solutions built-up using algorithms and techniques in resolving data matching issues. Now, with the involvement of sensors and automation in generating data obscures everything, predicting results to overcome a current era of ever enhancing demands and getting real-time visualization brings the need of feature like human behavior mode extraction to overcome any future threats. Big data analytics can bring the opportunity of predicting any misfortune even before they happen. Map reduce feature of big data supports massive data oriented process execution using distributed processing. Real-time human feature identification and detection can occur through sensors and internet sources. A behavioral prediction can further classify the information collected for introducing enhanced security extents. Real-time sensor devices are producing 24/7-hour data for further processing recording each event. IoT-based sensors can support in behavioral analysis model of a human. Real-time human behavioral monitoring based on image processing and IoT using big data analytics.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 1532-0626 |
Volume: | 33 |
Numéro: | 4 |
Pages: | e5529 |
Version évaluée par les pairs: | Oui |
Date: | 2021 |
Identifiant unique: | 10.1002/cpe.5529 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie informatique et génie logiciel Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | IoT, real-time behavioral monitoring, big data analytics, surveillance comportementale en temps réel, Internet des objets, analyses de données volumineuses |
Déposé le: | 20 avr. 2022 14:00 |
---|---|
Dernière modification: | 20 avr. 2022 14:00 |
Éditer le document (administrateurs uniquement)