Latif Ghazanfar, Bouchard Kévin, Maitre Julien, Back Arnaud et Bédard L. Paul. (2022). Deep-Learning-Based Automatic Mineral Grain Segmentation and Recognition. Minerals, 12, (4), e455.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5). 8MB |
URL officielle: http://dx.doi.org/doi:10.3390/min12040455
Résumé
A multitude of applications in engineering, ore processing, mineral exploration, and environmental science require grain recognition and the counting of minerals. Typically, this task is performed manually with the drawback of monopolizing both time and resources. Moreover, it requires highly trained personnel with a wealth of knowledge and equipment, such as scanning electron microscopes and optical microscopes. Advances in machine learning and deep learning make it possible to envision the automation of many complex tasks in various fields of science at an accuracy equal to human performance, thereby, avoiding placing human resources into tedious and repetitive tasks, improving time efficiency, and lowering costs. Here, we develop deep-learning algorithms to automate the recognition of minerals directly from the grains captured from optical microscopes. Building upon our previous work and applying state-of-the-art technology, we modify a superpixel segmentation method to prepare data for the deep-learning algorithms. We compare two residual network architectures (ResNet 1 and ResNet 2) for the classification and identification processes. We achieve a validation accuracy of 90.5% using the ResNet 2 architecture with 47 layers. Our approach produces an effective application of deep learning to automate mineral recognition and counting from grains while also achieving a better recognition rate than reported thus far in the literature for this process and other well-known, deep-learning-based models, including AlexNet, GoogleNet, and LeNet.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 2075-163X |
Volume: | 12 |
Numéro: | 4 |
Pages: | e455 |
Version évaluée par les pairs: | Oui |
Date: | 2022 |
Identifiant unique: | 10.3390/min12040455 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Sciences appliquées Sciences naturelles et génie > Sciences naturelles > Sciences de la terre (géologie, géographie) |
Département, module, service et unité de recherche: | Départements et modules > Département d'informatique et de mathématique > Module d'informatique et de mathématique Départements et modules > Département des sciences appliquées > Unité d'enseignement en sciences de la Terre Unités de recherche > Laboratoire des Matériaux Terrestres |
Mots-clés: | grain segmentation, deep learning, convolutional neural networks, ResNet, mineral recognition, segmentation des grains, apprentissage profond, réseaux de neurones convolutifs, reconnaissance minérale |
Déposé le: | 03 mai 2022 21:03 |
---|---|
Dernière modification: | 03 mai 2022 21:03 |
Éditer le document (administrateurs uniquement)