Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Temperature-dependent droplet impact dynamics of a water droplet on hydrophobic and superhydrophobic surfaces: An experimental and predictive machine learning–based study

Keshavarzi Samaneh, Sourati Jamshid, Momen Gelareh et Jafari Reza. (2022). Temperature-dependent droplet impact dynamics of a water droplet on hydrophobic and superhydrophobic surfaces: An experimental and predictive machine learning–based study. International Journal of Heat and Mass Transfer, 195, e123190.

[thumbnail of Temperature-dependent droplet impact dynamics of a water droplet on hydrophobic and superhydrophobic surfaces.pdf]
Prévisualisation
PDF - Version acceptée
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5).

2MB

URL officielle: http://dx.doi.org/doi.org/10.1080/07481187.2022.20...

Résumé

Heightening the water repellency of surfaces can serve anti-icing purposes by removing water drops before they freeze and adhere to a surface. Here we study the impact dynamics of water droplets on silicone rubber surfaces—ranging from hydrophobic to superhydrophobic—at −20, −10, and 25 °C. We evaluate the influence of static contact angle, contact angle hysteresis, surface roughness, temperature, impacting velocity, and droplet diameter on droplet behavior (e.g., deposition, bouncing, splash). Minor effect of temperature on droplet dynamics on microstructured surfaces for a wide range of Weber and Reynolds numbers is observed. Experimental observations show that full bouncing only occurs on superhydrophobic surfaces with a CA > 160° and a CAH < 2° at temperatures above 0 °C for We < 110 and Re < 5000. Increasing the impact velocity of the droplet on rough surfaces heightens the probability of splashing. This experimental data is then coupled with machine-learning techniques (logistic regression, decision tree, and random forest) to comprehensively investigate droplet impact behavior on hydrophobic and superhydrophobic surfaces at various temperatures. We predict the behavior probability of impacting droplets on surfaces as a function of Weber number, Reynolds number and surface features (static contact angle, contact angle hysteresis, temperature, and surface roughness). Our experimental results and machine learning–based predictions are highly consistent, demonstrating that machine learning can effectively predict droplet motion on hydrophobic and superhydrophobic silicone rubber surfaces at different temperatures.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:00179310
Volume:195
Pages:e123190
Version évaluée par les pairs:Oui
Date:Octobre 2022
Identifiant unique:10.1016/j.ijheatmasstransfer.2022.123190
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Laboratoire des revêtements glaciophobes et ingénierie des surfaces (LaRGIS)
Mots-clés:superhydrophobic, surface features, temperature, droplet impact, freezing, machine learning, superhydrophobe, caractéristiques de surface, température, impact de gouttelettes, congélation, apprentissage automatique
Déposé le:21 déc. 2022 14:57
Dernière modification:01 oct. 2024 04:00
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630