Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Dynamic behavior of impinging drops on water repellent surfaces: Machine learning-assisted approach to predict maximum spreading

Azimi Yancheshme Amir, Enayati Saman, Kashcooli Yaser, Jafari Reza, Ezzaidi Hassan et Momen Gelareh. (2022). Dynamic behavior of impinging drops on water repellent surfaces: Machine learning-assisted approach to predict maximum spreading. Experimental Thermal and Fluid Science, 139, e110743.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/doi.org/10.1016/j.expthermflusci...

Résumé

The study of drop dynamic undergoing collision with solid surfaces seems quite necessary due to its practical applications ranging from coating industries to anti-icing and self-cleaning surfaces. Therefore, we experimentally studied the dynamic of impinging drop on water-repellent surfaces for a wide range of drop properties and initial velocities in terms of weber number (We). We considered the maximum spreading diameter to quantify the spreading dynamic. We modified one of the existing energy-balance models to analytically predict the observed maximum spreading diameters. We showed that above a critical We number (roughly 60–80), the maximum spreading diameter of superhydrophobic surfaces starts to deviate from those of hydrophobic surfaces. Therefore, we incorporated an adjusting factor into the energy-balance model to consider the transition from hydrophobicity to superhydrophobicity. Moreover, we developed a machine learning approach to predict the maximum spreading diameter as a function of drop properties and surface characteristics. Using the machine learning approach, it was found that beyond a critical contact angle (CAadv ∼ 150°–160°) the maximum spreading diameter does not depend on the contact angle anymore. Moreover, for low We numbers, the maximum spreading diameter decrease with increasing the contact angle, while for high We numbers they are directly proportional.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:08941777
Volume:139
Pages:e110743
Version évaluée par les pairs:Oui
Date:2022
Identifiant unique:10.1016/j.expthermflusci.2022.110743
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Laboratoire des revêtements glaciophobes et ingénierie des surfaces (LaRGIS)
Mots-clés:impinging drop, maximum spreading diameter, superhydrophobic surface, hydrophobic surface, machine learning, goutte d'impact, diamètre d'épandage maximal, surface superhydrophobe, surface hydrophobe, apprentissage automatique
Déposé le:03 févr. 2023 00:42
Dernière modification:09 févr. 2023 15:34
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630