Keshavarzi Samaneh, Entezari A., Maghsoudi Khosrow, Momen Gelareh et Jafari Reza. (2022). Ice nucleation on silicone rubber surfaces differing in roughness parameters and wettability: Experimental investigation and machine learning–based predictions. Cold Regions Science and Technology, 203, e103659.
PDF
- Version acceptée
Administrateurs seulement jusqu'au 1 Novembre 2024. Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5). 2MB | |
PDF
- Matériel supplémentaire
Administrateurs seulement jusqu'au 1 Novembre 2024. Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5). 374kB |
URL officielle: http://dx.doi.org/doi.org/10.1016/j.coldregions.20...
Résumé
Superhydrophobic surfaces serving as icephobic surfaces are a passive means of limiting the icing of surfaces. Ice nucleation time depends on not only liquid properties and environmental conditions but also surface features; however, it is challenging to investigate ice nucleation time and the influencing parameters simultaneously. This manuscript presents two approaches, experimental testing and machine learning, to study ice nucleation time on exposed surfaces. Hydrophobic/superhydrophobic silicone rubber surfaces were fabricated, and these surfaces varied in their wettability and roughness parameters. Superhydrophobic surfaces characterized by a higher arithmetic average, root mean squared, ten-point height, maximum height of the profile, and a Gaussian roughness distribution—skewness near 0—had longer ice nucleation times. We then used neural networks to model icephobicity in relation to ice nucleation time. The predicted ice nucleation time of the model, trained using some of the experimental results, demonstrated a good agreement with the experimental outcomes. Furthermore, this machine learning approach determined the relative importance of roughness parameters, surface wettability, temperature, and droplet volume in determining surface icephobicity. The proposed approach provides a starting point for studying heterogeneous ice nucleation prediction through an understanding of the key parameters required to optimize the icephobic behavior of superhydrophobic surfaces.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 0165232X |
Volume: | 203 |
Pages: | e103659 |
Version évaluée par les pairs: | Oui |
Date: | 2022 |
Identifiant unique: | 10.1016/j.coldregions.2022.103659 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Laboratoire des revêtements glaciophobes et ingénierie des surfaces (LaRGIS) Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | heterogeneous nucleation, ice nucleation time, surface roughness parameters, machine learning, superhydrophobic surface, icephobicity, nucléation hétérogène, temps de nucléation de la glace, paramètres de rugosité de surface, apprentissage automatique, surface superhydrophobe, glacephobicité |
Déposé le: | 21 déc. 2022 16:45 |
---|---|
Dernière modification: | 08 févr. 2023 19:18 |
Éditer le document (administrateurs uniquement)