Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Mechanical properties, icephobicity, and durability assessment of HT-PDMS nanocomposites: Effectiveness of sol–gel silica precipitation content

Sobhani Sarah, Bakhshandeh Ehsan, Jafari Reza et Momen Gelareh. (2023). Mechanical properties, icephobicity, and durability assessment of HT-PDMS nanocomposites: Effectiveness of sol–gel silica precipitation content. Journal of Sol-Gel Science and Technology, 105, (2), p. 1-12.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/10.1007/s10971-022-06033-2

Résumé

The main purpose of this research is to assess the effectiveness of precipitated nano-silica on mechanical properties and icephobicity of hydroxyl-terminated polydimethylsiloxane (HT-PDMS). It also tries to shed light on the correlation between mechanical characteristics and icephobicity of the abovementioned nanocomposites. In this regard, an icephobic coating was designed based on hydroxyl-terminated polydimethylsiloxane (HT-PDMS) elastomer through the sol–gel method with an emphasis on mechanical properties enhancement and durability. The quantity of precipitated nano-silica domains in HT-PDMS hybrid coatings was meticulously tailored by utilizing various ratios of tetraethyl orthosilicate (TEOS) and pre-hydrolyzed TEOS as silica domain precursors. It was established that using pre-hydrolyzed TEOS facilitated nano-silica precipitation and improved the coating’s thermal stability and mechanical properties. Nano-silica precipitation was detected by thermogravimetric analysis (TGA) and confirmed by scanning electron microscopy (SEM). The abundance of nanosized silica particles precipitated by TEOS hydrolysis and condensation was <5%, while >20% in the nanocomposite sample precipitated by using pre-hydrolyzed TEOS. Tensile measurements indicated that greater silica precipitation enhanced tensile strength, elongation at break, and Young’s modulus. The push-off test confirmed the very low shear ice adhesion strength (30–40 kPa) and the icephobic nature of the coatings. However, it was demonstrated that mechanical enhancement is correlated to ice adhesion strength up to 13.6% silica content, and icephobicity would be sacrificed at higher contents. Icing–deicing testing reveals that despite the initial ice adhesion strength increase by higher silica content, coatings present very better durability after repetitive cycles in greater silica value.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:0928-0707
Volume:105
Numéro:2
Pages:p. 1-12
Version évaluée par les pairs:Oui
Date:2023
Identifiant unique:10.1007/s10971-022-06033-2
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Laboratoire des revêtements glaciophobes et ingénierie des surfaces (LaRGIS)
Mots-clés:HT-PDMS, icephobic coating, silica nanocomposites, sol–gel, Young’s modulus, revêtement icephobe, nanocomposites de silice, sol-gel, module d'Young
Déposé le:14 août 2023 19:04
Dernière modification:14 août 2023 19:04
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630