Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Modelling of strain-controlled thermomechanical fatigue testing of cast AlSi7Cu3.5Mg0.15 (Mn, Zr, V) alloy for different aging conditions

Heugue Pierre, Larouche Daniel, Breton Francis, Martinez Rémi, Chen X-Grant et Massinon Denis. (2022). Modelling of strain-controlled thermomechanical fatigue testing of cast AlSi7Cu3.5Mg0.15 (Mn, Zr, V) alloy for different aging conditions. Metals, 12, e1258.

[thumbnail of metals-12-01258-v3.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5).

8MB

URL officielle: http://dx.doi.org/doi:10.3390/met12081258

Résumé

Thermomechanical fatigue loadings (TMF) applied on components in a certain temperature range with a variable state of stress (tensile and/or compression) produce a localized concentration of plastic strains that results in crack initiation and propagation. The time evolution of plastic strains must be known a priori to predict the lifetime of a part submitted to TMF loadings, which requires an extensive campaign of mechanical characterization conducted at different temperatures and aging conditions. Such a campaign was proposed for the aluminum alloy AlSi7Cu3.5Mg0.15 (Mn, Zr, V), which is recognized as being creep resistant. Combined isothermal low-cycle fatigue and isothermal creep tests were performed on this alloy to determine the constitutive parameters based on the Lemaître and Chaboche (LM&C) viscoplastic model. These laws were implemented within the finite element simulation software (Z-set) to model the response of the alloy to a thermomechanical fatigue test. The results of TMF Z-Set simulations, using the LM&C model adapted for two aging conditions, were then compared with results obtained from “Out of Phase” thermomechanical fatigue testings (OP-TMF) performed on a Gleeble 3800 machine. The modelling of the OP-TMF test revealed the complexity of the mechanical behavior of the material induced by the temperature gradient prevailing along with the cylindrical specimen. It was found that a better prediction of the evolution of plastic strains requires taking into account a larger range of plastic strain rates conditions for the determination of the constitutive law and eventually includes the role of the microstructure in the evolution of the material behavior, starting first with the yield stress.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:2075-4701
Volume:12
Pages:e1258
Version évaluée par les pairs:Oui
Date:2022
Identifiant unique:10.3390/met12081258
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:319 cast alloy, thermo-mechanical fatigue, Gleeble 3800 system, cyclic hardening
Déposé le:13 juill. 2023 18:39
Dernière modification:13 juill. 2023 18:39
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630