Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

The thermodynamic stability of the Cassie–Baxter regime determined by the geometric parameters of hierarchical superhydrophobic surfaces

Maghsoudi Khosrow, Momen Gelareh et Jafari Reza. (2023). The thermodynamic stability of the Cassie–Baxter regime determined by the geometric parameters of hierarchical superhydrophobic surfaces. Applied Materials Today, 34, e101893.

[thumbnail of The thermodynamic stability of the Cassie–Baxter regime determined by the geometric parameters of hierarchical superhydrophobic surfaces.pdf] PDF - Version acceptée
Administrateurs seulement jusqu'au 1 Octobre 2025.
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5).

1MB

URL officielle: http://dx.doi.org/10.1016/j.apmt.2023.101893

Résumé

Understanding the geometric parameters of hierarchical superhydrophobic surfaces and their impact on the thermodynamic stability of the Cassie-Baxter regime are invaluable for surface wettability–related applications. Herein, we fabricated hierarchical micro-microstructured silicone rubber surfaces having superhydrophobic properties via an industrially applicable direct replication method. The mold inserts were fabricated using photochemical milling, laser ablation, and wet chemical etching to create different hierarchical levels. We calculated surface roughness ratios and equilibrium contact angles and considered the contribution of sub-microstructures in the wettability properties via physical and statistical analyses. Comparing the calculated theoretical wettability properties and experimental measurements revealed a good agreement among all samples because of the accurate predictions of the governing wetting regime. It was worthwhile insights into the design and fabrication of superhydrophobic structured surfaces. The presence of superimposed sub-microstructures produced desirable water-repellency properties because of the reduced solid–liquid contact area as low as 0.086. Given the primary importance of the Cassie–Wenzel wetting transition on the design and fabrication of superhydrophobic surfaces, we evaluated the thermodynamic persistence of the Cassie–Baxter regime by analyzing the energy barrier to be overcome by droplets with various volumes. Finally, we discuss the contribution of the dimensional parameters of microstructures on the stability of the Cassie–Baxter regime.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:23529407
Volume:34
Pages:e101893
Version évaluée par les pairs:Oui
Date:Octobre 2023
Nombre de pages:1
Identifiant unique:10.1016/j.apmt.2023.101893
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Laboratoire des revêtements glaciophobes et ingénierie des surfaces (LaRGIS)
Mots-clés:hierarchical structures, superhydrophobicity, geometric parameters, contact angle, wetting transition, Cassie–Wenzel transition, structures hiérarchiques, superhydrophobicité, paramètres géométriques, angle de contact, transition de mouillage, transition de Cassie – Wenzel
Déposé le:20 sept. 2023 17:25
Dernière modification:20 sept. 2023 17:25
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630