Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Drone lidar-derived surface complexity metrics as indicators of intertidal oyster reef condition

Espriella Michael C., Lecours Vincent, Camp Edward V., Andrew Lassiter H., Wilkinson Benjamin, Frederick Peter C. et Pittman Simon J.. (2023). Drone lidar-derived surface complexity metrics as indicators of intertidal oyster reef condition. Ecological Indicators, 150, e110190.

[thumbnail of 1-s2.0-S1470160X23003321-main.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY-NC-ND 2.5).

11MB

URL officielle: https://doi.org/10.1016/j.ecolind.2023.110190

Résumé

Eastern oysters (Crassostrea virginica) generate structurally complex reef systems that offer diverse ecosystem services. However, there is limited understanding of how reef structure translates into reef condition. This knowledge gap might be better addressed if oyster reef structure could be more rapidly assessed. Conventional in situ monitoring techniques are often time-intensive, invasive, and do not provide spatially continuous information on the reef structure. Unoccupied Aircraft Systems (UAS), commonly referred to as drones, equipped with optical sensors can rapidly and non-invasively map intertidal oyster reef surfaces. We demonstrate how a digital surface model from UAS-based light detection and ranging (lidar) can enable very high-resolution characterization and monitoring of intertidal oyster reef surface morphology. Generalized linear models (GLMs) identified relationships between in situ live oyster counts and surface complexity metrics derived from digital surface models produced from lidar point clouds. Statistically significant relationships between surface complexity metrics (e.g., gray level co-occurrence features, volume to area ratio, skewness of elevation) and live oyster counts suggest that surface complexity provides useful proxies for reef condition. Advancing the application of remote sensing to intertidal oyster reefs can help identify reefs that are prone to degradation and inform conservation and restoration strategies.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:1470160X
Volume:150
Pages:e110190
Version évaluée par les pairs:Oui
Date:Juin 2023
Nombre de pages:1
Identifiant unique:10.1016/j.ecolind.2023.110190
Sujets:Sciences naturelles et génie > Sciences appliquées > Océanographie
Sciences naturelles et génie > Sciences naturelles > Sciences de la terre (géologie, géographie)
Département, module, service et unité de recherche:Unités de recherche > Centre de recherche sur la Boréalie (CREB)
Départements et modules > Département des sciences humaines
Mots-clés:UAV, UAS, rugosity, geomorphometry, coastal habitat, remote sensing
Déposé le:27 oct. 2023 17:45
Dernière modification:31 juill. 2024 15:58
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630