Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Satellite-derived bathymetry using machine learning and optimal Sentinel-2 imagery in South-West Florida coastal waters

Mudiyanselage S.S.J.D., Abd-Elrahman A., Wilkinson B. et Lecours Vincent. (2022). Satellite-derived bathymetry using machine learning and optimal Sentinel-2 imagery in South-West Florida coastal waters. GIScience & Remote Sensing, 59, (1), p. 1143-1158.

[thumbnail of Satellite-derived bathymetry using machine learning and optimal Sentinel-2 imagery in South-West Florida coastal waters.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5).

9MB

URL officielle: https://doi.org/10.1080/15481603.2022.2100597

Résumé

This study examines the use of the Multi-Spectral Instrument (MSI) in Sentinel-2 satellite in combination with regression-based random forest models to estimate bathymetry along the extended southwestern Florida nearshore region. In this study, we focused on the development of a framework leading to a generalized Satellite-Derived Bathymetry (SDB) model applicable to an extensive and diversified coastal region (>200 km of coastline) utilizing multi-date images. The model calibration and validation were done using airborne lidar bathymetry (ALB). As ALB surveys are very expensive to conduct, the proposed model was trained with a limited and practically feasible ALB data sample to expand the model’s practicality. Out of the three different sub-models introduced using varying combinations of historical satellite imagery, the combined-band model with the largest feature pool yielded the highest accuracy. The results showed root mean square error (RMSE) values of 8% and lower for the 0–13.5 m depth range (limit of the lidar surveys used) for all areas of interest, indicating the model efficiency and adaptability to varying coastal characteristics. The influence of training sample locations on model performance was evaluated using three distinct model configurations. The difference between these configurations was less than 5 cm, which highlights the robustness of the proposed SDB model. The quality of the satellite imagery is a significant factor that influences the accuracy of the bathymetry estimation. A preliminary methodology incorporating spectral data embedded in Sentinel-2 imagery to effectively select the most optimal satellite imagery was also proposed in this study.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:1548-1603
Volume:59
Numéro:1
Pages:p. 1143-1158
Version évaluée par les pairs:Oui
Date:31 Décembre 2022
Nombre de pages:16
Identifiant unique:10.1080/15481603.2022.2100597
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Sciences naturelles et génie > Sciences naturelles > Sciences de la terre (géologie, géographie)
Département, module, service et unité de recherche:Unités de recherche > Centre de recherche sur la Boréalie (CREB)
Départements et modules > Département des sciences humaines
Mots-clés:satellite-derived bathymetry, sentinel-2, airborne lidar bathymetry, machine learning, random forest
Déposé le:27 oct. 2023 18:49
Dernière modification:31 juill. 2024 15:56
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630