Gábor Lukáš, Moudrý Vítězslav, Lecours Vincent, Malavasi Marco, Barták Vojtěch, Fogl Michal, Šímová Petra, Rocchini Duccio et Václavík Tomáš. (2020). The effect of positional error on fine scale species distribution models increases for specialist species. Ecography, 43, (2), p. 256-269.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5). 1MB |
URL officielle: https://doi.org/10.1111/ecog.04687
Résumé
Species occurrences inherently include positional error. Such error can be problematic for species distribution models (SDMs), especially those based on fine‐resolution environmental data. It has been suggested that there could be a link between the influence of positional error and the width of the species ecological niche. Although positional errors in species occurrence data may imply serious limitations, especially for modelling species with narrow ecological niche, it has never been thoroughly explored. We used a virtual species approach to assess the effects of the positional error on fine‐scale SDMs for species with environmental niches of different widths. We simulated three virtual species with varying niche breadth, from specialist to generalist. The true distribution of these virtual species was then altered by introducing different levels of positional error (from 5 to 500 m). We built generalized linear models and MaxEnt models using the distribution of the three virtual species (unaltered and altered) and a combination of environmental data at 5 m resolution. The models’ performance and niche overlap were compared to assess the effect of positional error with varying niche breadth in the geographical and environmental space. The positional error negatively impacted performance and niche overlap metrics. The amplitude of the influence of positional error depended on the species niche, with models for specialist species being more affected than those for generalist species. The positional error had the same effect on both modelling techniques. Finally, increasing sample size did not mitigate the negative influence of positional error. We showed that fine‐scale SDMs are considerably affected by positional error, even when such error is low. Therefore, where new surveys are undertaken, we recommend paying attention to data collection techniques to minimize the positional error in occurrence data and thus to avoid its negative effect on SDMs, especially when studying specialist species.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 0906-7590 |
Volume: | 43 |
Numéro: | 2 |
Pages: | p. 256-269 |
Version évaluée par les pairs: | Oui |
Date: | Février 2020 |
Nombre de pages: | 14 |
Identifiant unique: | 10.1111/ecog.04687 |
Sujets: | Sciences naturelles et génie > Sciences naturelles > Biologie et autres sciences connexes Sciences naturelles et génie > Sciences naturelles > Sciences de la terre (géologie, géographie) |
Département, module, service et unité de recherche: | Unités de recherche > Centre de recherche sur la Boréalie (CREB) Départements et modules > Département des sciences humaines |
Mots-clés: | data errors, niche breadth, spatial overlay, virtual species |
Déposé le: | 30 oct. 2023 18:24 |
---|---|
Dernière modification: | 31 juill. 2024 15:54 |
Éditer le document (administrateurs uniquement)