Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Antibacterial Aluminum Surfaces

Agbe Henry. (2021). Antibacterial Aluminum Surfaces. Thèse de doctorat, Université du Québec à Chicoutimi.

[thumbnail of Agbe_uqac_0862D_11081.pdf] PDF
14MB

Résumé

Healthcare-associated infections (HCAI) is a serious public health problem that results in the death of 8,000-12000 Canadians each year. Besides antibacterial, antifungal, and antiviral therapies, one potential strategy for breaking the chain of HCAI transmission is via the modification of frequently touched surfaces with antibacterial characteristics, called Antibacterial touched surfaces. This is particularly so, given that most pathogenic microbes survive on frequently touched surfaces including doorknobs, over bed tables and countertops, for days, weeks and even months. Thus, frequently touched surfaces can become reservoirs for subsequent direct and indirect cross contamination events. However, problems associated with existing antibacterial coatings such as lack of durability, uncontrolled release of antibacterial agents, lack of standardized testing protocols and antibacterial resistance issues, have necessitated the need for a novel and durable antibacterial surfaces, in addition to appropriate cleaning regime for decontamination of frequently touched surfaces. In this research project, surfaces of AA6061-T6 aluminum alloy (Al-Mg-Si alloy) have been transformed into durable antibacterial surface via four different novel strategies. The first strategy consists of fabrication of superhydrophobic silver-polymethylhydrosiloxane (Ag-PMHS) modified aluminum surface by anodization of aluminum, which provides nano-rough, porous, and stable oxide of aluminum, followed by modification with Ag-PMHS nanocomposites, which delivers a second degree of nanorough patterns from the presence of Ag nanoparticles (Ag-NPs), as well as renders the surface superhydrophobic due to the passivation of low surface energy PMHS. Ag-NPs were used to ensure longevity of antibacterial properties even after eventual possible loss of superhydrophobicity in the long-term. These surfaces presented a bacterial adhesion reduction of 99.0 %, 99.5 %, and 99.3 % for the bacteria of interest, namely, Pseudomonas aeruginosa (P.A.), Escherichia-coli (E. coli) and Staphylococcus aureus (S.A.), respectively. The second strategy involves the fabrication of novel superhydrophobic aluminum surface with tunable antibacterial and anti-biofouling properties by chemical etching and octyltriethoxysilane (OTES)–quaternary ammonium salt (QUATs) passivation. The superhydrophobic properties of the OTES passivated aluminum was monotonically tuned by optimizing the quantity of QUATs molecules by varying the molar ratios of QUATs/OTES from 0 to 54 × 10-4. An antibacterial property with a zone of inhibition of 34 ± 1.6, 22 ± 1.4, and 25 ± 0.9 against S.A, P.A., and E. coli, respectively were obtained for the solution form of OTES-QUATs, while an anti-biofouling property of 99.9, 99 and 99% for same bacteria respectively, were obtained for the OTES-QUATs coated aluminum surface. The third strategy aimed at utilizing a two-step electrochemical deposition of silver phosphate (Ag3PO4) on anodized aluminum surfaces to obtain durable antibacterial properties. In this technique, ionic silver (Ag+ ion) was first reduced to metallic Ag0 on anodized aluminum oxide surface, followed by oxidation of the metallic silver (Ag0) in an electrolyte of sodium orthophosphate to electrochemically precipitate Ag3PO4 in situ on anodized aluminum surface. The Ag3PO4 coated anodized aluminum exhibited a remarkably high coating adhesion and a 100% antibacterial property against E. coli bacteria. Finally, an additional one-step hard aluminum anodization process was also employed to fabricate novel antibacterial aluminum surface. Controlling the concentration of different electrolytes, current density and anodization time, optimized surface morphology with diameters 151 ± 37 nm was found to provide excellent antibacterial properties, efficiently killing 100% E. coli bacteria. Results of this dissertation demonstrate that the utilization of novel surface engineering strategies such as anodization, low surface energy passivation and electrochemical surface modification on AA6061-T6 aluminum alloy, proves to be efficient in antibacterial activities as well as in robustness and durability. These novel surfaces have shown the ability of reducing microbial burden of clinically relevant and HCAIs implicated pathogens, namely, S.A., P.A., and E. coli.

Les infections nosocomiales (associées à soins de santé, IAS) constituent un important problème de santé publique et sont à l’origine d’environ 8000 à 12000 décès par an parmi les Canadiens. Outre les thérapies antibactériennes, antifongiques et antivirales, une stratégie potentielle pour briser la chaîne de transmission des IAS consiste à modifier les surfaces fréquemment touchées ayant des caractéristiques antibactériennes, appelées surfaces touchées antibactériennes. Ceci est particulièrement vrai, étant donné que la plupart des microbes pathogènes survivent pendant des jours, des mois, voire des années sur les surfaces fréquemment touchées, incluant les poignées de porte, les tables de lit et les comptoirs, des semaines et même des mois. Ainsi, les surfaces fréquemment touchées peuvent devenir des réservoirs de contamination croisée directe et indirecte. Cependant, les problèmes associés aux revêtements antibactériens existants tels que la durabilité du revêtement, la libération incontrôlée d'agents antibactériens, l’absence de protocoles pour des tests standardisés et les problèmes de résistance antibactérienne, imposent le besoin de disposer de surfaces antibactériennes nouvelles et durables, en plus d'un régime de nettoyage approprié pour la décontamination des surfaces fréquemment touchées. Dans ce projet de recherche, les revêtements d’alliage d'aluminium AA6061-T6 (alliage Al-Mg-Si) ont été transformées en surface antibactérienne durable via quatre stratégies nouvelles. La première stratégie consiste en une modification de la surface d’aluminium anodisée par argent-polyméthylhydrosiloxane (Ag-PMHS) superhydrophobe, ce qui fournit un oxyde stable d'alumine poreux et nano-rugueux. Cette première modification est suivie d’une seconde modification avec des nanocomposites Ag-PMHS, générant un deuxième degré des motifs nanométriques à partir des nanoparticules d'Ag (Ag-NPs), et rendant la surface superhydrophobe grâce à la passivation d’une surface de faible énergie PMHS. Les Ag-NP ont été utilisés pour assurer la longévité des propriétés antibactériennes, même après une éventuelle perte de superhydrophobicité à long terme. Ces surfaces présentaient une réduction d'adhérence bactérienne de 99,0%, 99,5% et 99,3% pour les bactéries d'intérêt, à savoir, respectivement, Pseudomonas aeruginosa (P.A.), Escherichia-coli (E. coli) et Staphylococcus aureus (S. A.). La deuxième stratégie implique la fabrication d'une surface originale en aluminium superhydrophobe avec des propriétés antibactériennes et anti-bio-encrassement accordables par gravure chimique et passivation d’octyltriéthoxysilane (OTES) / sel d'ammonium quaternaire (QUAT). Les propriétés superhydrophobes de l'aluminium ayant un revêtement passif d’OTES ont été accordées de manière monotone en optimisant la quantité de molécules QUATs par variation des ratios molaires QUATs / OTES de 0 à 54 × 10-4. Une propriété antibactérienne ayant une zone d'inhibition de 34 ± 1,6, 22 ± 1,4 et 25 ± 0,9 contre S.A, P.A. et E. coli, respectivement, ont été obtenues pour la solution d’OTES-QUAT, tandis qu'une propriété anti-encrassement biologique de 99,9, 99 et 99% pour les mêmes bactéries respectivement, a été obtenue pour la surface d’aluminium revêtue d'OTES-QUAT. La troisième stratégie visait à l’utilisation d’un dépôt de phosphate d’argent (Ag3PO4) sur les surfaces d’aluminium anodisées à deux étapes, afin d’obtenir des propriétés antibactériennes durables. Pour cette technique, l’ion d’argent (Ag+) était premièrement réduit en argent métallique (Ag0) sur surface d’oxyde d’aluminium anodisée, suivi d’une oxydation de Ag0 dans un électrolyte d’orthophosphate de sodium pour former un précipité électrochimique Ag3PO4 in situ sur surface d’aluminium anodisée. L’aluminium anodisée recouvert d’Ag3PO4 a une adhérence de recouvrement très élevée et une propriété antibactérienne à 100% contre E Coli. Finalement, un procédé supplémentaire d'anodisation de l'aluminium dur en une étape a également été utilisé pour fabriquer une surface originale d'aluminium antibactérienne. En contrôlant la concentration des différents types d’électrolytes, la densité de courant et le temps d'anodisation, une morphologie de surface optimisée avec des diamètres de 151 ± 37 nm s'est avérée fournir des propriétés antibactériennes excellentes, tuant efficacement 100% des bactéries E. coli. Les résultats de cette thèse démontrent que l'utilisation de nouvelles stratégies d'ingénierie de surface telles que l'anodisation, la passivation à faible énergie de surface et la modification de surface électrochimique sur l'alliage d'aluminium AA6061-T6 s'avère efficace dans les activités antibactériennes ainsi que dans la robustesse et la durabilité. Ces nouvelles surfaces ont montré la capacité de réduire la charge microbienne des pathogènes cliniquement pertinents et impliqués dans les IAS, à savoir, S.A., P.A. et E. coli.

Type de document:Thèse ou mémoire de l'UQAC (Thèse de doctorat)
Date:2021
Lieu de publication:Chicoutimi
Programme d'étude:Doctorat en ingénierie
Nombre de pages:266
ISBN:Non spécifié
Sujets:Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Programmes d'études de cycles supérieurs en ingénierie
Directeur(s), Co-directeur(s) et responsable(s):Sarkar, Dilip Kumar
Chen, X-Grant
Mots-clés:anodisée, antibactériennes, d'aluminium, les infections nosocomiales, passivation, surface superhydrophobe, une morphologie, Healthcare-associated infections, antibacterial, aluminum, anodization, superhydrophobic surface, surface morphology
Déposé le:15 déc. 2023 09:27
Dernière modification:18 déc. 2023 22:15
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630