Sayadi Ahmed, Mahi Djillali, Fofana Issouf, Bessissa Lakhdar, Bessedik Sid Ahmed, Arroyo-Fernandez Oscar Henry et Jalbert Jocelyn. (2023). Modeling and Predicting the Mechanical Behavior of Standard Insulating Kraft Paper Used in Power Transformers under Thermal Aging. Energies, 16, (18), e6455.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY 4.0). 3MB |
URL officielle: http://dx.doi.org/10.3390/en16186455
Résumé
The aim of this research is to predict the mechanical properties along with the behaviors of standard insulating paper used in power transformers under thermal aging. This is conducted by applying an artificial neural network (ANN) trained with a multiple regression model and a particle swarm optimization (MR-PSO) model. The aging of the paper insulation is monitored directly by the tensile strength and the degree of polymerization of the solid insulation and indirectly by chemical markers using 2-furfuraldehyde compound content in oil (2-FAL). A mathematical model is then developed to simulate the mechanical properties (degree of polymerization (DPV) and tensile index (Tidx)) of the aged insulation paper. First, the datasets obtained from experimental results are used to create the MR model, and then the optimizer method PSO is used to optimize its coefficients in order to improve the MR model. Then, an ANN method is trained using the MR-PSO to create a nonlinear correlation between the DPV and the time, temperature, and 2-FAL values. The acquired results are assessed and compared with the experimental data. The model presents almost the same behavior. In particular, it has the capability to accurately simulate the nonlinear property behavior of insulation under thermal aging with an acceptable margin of error. Since the life expectancy of power transformers is directly related to that of the insulating paper, the proposed model can be useful to maintenance planners.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 1996-1073 |
Volume: | 16 |
Numéro: | 18 |
Pages: | e6455 |
Version évaluée par les pairs: | Oui |
Date: | 6 Septembre 2023 |
Nombre de pages: | 1 |
Identifiant unique: | 10.3390/en16186455 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie électrique et génie électronique Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Vieillissement de l’appareillage installé sur les lignes à haute tension (ViAHT) |
Mots-clés: | modeling, prediction, mechanical behavior, particle swarm optimization, neural networks, power transformers, modélisation, prédiction, comportement mécanique, optimisation des essaims de particules, réseaux de neurones, transformateurs de puissance |
Déposé le: | 02 févr. 2024 18:53 |
---|---|
Dernière modification: | 02 févr. 2024 18:53 |
Éditer le document (administrateurs uniquement)