Hidouri Slah, Jafari Reza et Momen Gelareh. (2024). Development of a polydimethylsiloxane–Eucalyptus essential oil antibacterial coating. Journal of Coatings Technology and Research, 21, (2), p. 747-760.
Le texte intégral n'est pas disponible pour ce document.
URL officielle: https://doi.org/10.1007/s11998-023-00854-8
Résumé
This study dissects the use of room temperature ionic liquids (RT-ILs) in a dynamic surface for anti-icing applications. Anti-icing properties of ILs-containing PDMS-based coatings fabricated by two different types of ILs, are evaluated to establish a relationship between the anti-icing behavior and physicochemical properties of the ILs. The surface chemistry of coatings and the existence of distinctive groups of the ILs anions on the surface of coatings characterized by Attenuated Total Reflectance-Fourier transform infrared (FTIR) spectroscopy (ATR-FTIR) and confirmed by using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy-energy dispersive X-ray analysis (SEM/EDX). The 3D profiles and roughness parameter of the surfaces were investigated by a confocal laser microscopy profiler. Regarding the importance of correlation between wettability and ice adhesion, the wettability of coatings was studied. The results show a significant reduction 30–40% in sliding angle (SA) and contact angle hysteresis (CAH) in ILs-containing coatings. Differential scanning calorimetry (DSC), freezing delay time, push-off and centrifugal adhesion tests (CAT) served to distinguish the performance of the two ILs in regard to ice nucleation temperature and formation time, and ice adhesion strength, respectively. The 60–70% reduction in ice adhesion strength for the IL-containing coatings, obtained by push-off test, is due to the presence of strong ionic hydrogen bounded water and the formation of self-lubricating quasi liquid layer that can function at much lower temperature. Solid-state nuclear magnetic resonance (NMR) spectroscopy has confirmed the presence of nonfrozen water molecules at the interface. Consequently, incorporating ILs into coatings provides an effective approach to delay ice nucleation, restrict ice growth recrystallization and reduce ice adhesion strength. A comparison of enhanced anti-icing performance of ILs-containing coatings highlights the significant influence of minor changes in the chemical structure of ILs on their potential for anti-icing applications.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 1547-0091 |
Volume: | 21 |
Numéro: | 2 |
Pages: | p. 747-760 |
Version évaluée par les pairs: | Oui |
Date: | 1 Mars 2024 |
Nombre de pages: | 14 |
Identifiant unique: | 10.1007/s11998-023-00854-8 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Laboratoire des revêtements glaciophobes et ingénierie des surfaces (LaRGIS) |
Mots-clés: | dynamic anti-icing coating, ice adhesion, ice formation, ion mobility, ionic hydrogen bonds, ionic liquids, revêtement antigivrage dynamique, adhérence de la glace, formation de glace, mobilité ionique, liaisons hydrogène ioniques, liquides ioniques |
Déposé le: | 15 avr. 2024 16:06 |
---|---|
Dernière modification: | 15 avr. 2024 16:06 |
Éditer le document (administrateurs uniquement)