Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

A metaheuristic-optimization-based neural network for icing prediction on transmission lines

Snaiki Reda, Jamali Abdeslan, Rahem Ahmed, Shabani Mehdi et Barjenbruch Brian L.. (2024). A metaheuristic-optimization-based neural network for icing prediction on transmission lines. Cold Regions Science and Technology, 224, e104249.

[thumbnail of A metaheuristic-optimization-based neural network for icing prediction on transmission lines.pdf] PDF - Version acceptée
Administrateurs seulement jusqu'au 1 Août 2026.
Disponible sous licence Creative Commons (CC-BY-NC-ND 4.0).

1MB

URL officielle: https://doi.org/10.1016/j.coldregions.2024.104249

Résumé

Ice accretion on overhead transmission line systems is a leading cause of power outages and can lead to substantial economic losses in northern regions. Therefore, accurately and rapidly predicting ice accretion on power lines is crucial for ensuring the safe operation of the power grid. This study introduces a machine learning method for predicting the ice-to-liquid ratio (ILR), an important parameter for assessing ice accretion efficiency. While estimating ILR is vital for operational forecasting, many existing ice accretion models do not include this capability. A feedforward neural network (FFNN) trained with stochastic gradient descent and various metaheuristic optimizers - specifically particle swarm optimization, grey wolf optimizer, whale optimizer, and slime mold optimizer - is employed to forecast hourly ILF. Environmental data required for training and testing the FFNN model were obtained from the Automated Surface Observing System (ASOS). A global sensitivity analysis using the Sobol index, evaluated via the coefficients of a polynomial chaos expansion, was conducted to identify the most influential input parameters. The results indicate that only four input parameters significantly contribute to the variance in the response: precipitation, temperature, dew point temperature, and wind speed. Furthermore, the FFNN model trained with metaheuristic optimizers outperformed the stochastic gradient descent approach. With the predicted , ice accumulation can be easily calculated as the product of ILR and the amount of liquid precipitation depth.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:0165232X
Volume:224
Pages:e104249
Version évaluée par les pairs:Oui
Date:Août 2024
Nombre de pages:1
Identifiant unique:10.1016/j.coldregions.2024.104249
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:ice accretion, ice-to-liquid ratio, machine learning, feature selection, metaheuristic optimizer, accumulation de glace, rapport glace/liquide, apprentissage automatique, sélection de fonctionnalités, optimiseur métaheuristique
Déposé le:27 juin 2024 13:02
Dernière modification:27 juin 2024 13:02
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630