Snaiki Reda, Jamali Abdeslan, Rahem Ahmed, Shabani Mehdi et Barjenbruch Brian L.. (2024). A metaheuristic-optimization-based neural network for icing prediction on transmission lines. Cold Regions Science and Technology, 224, e104249.
PDF
- Version acceptée
Administrateurs seulement jusqu'au 1 Août 2026. Disponible sous licence Creative Commons (CC-BY-NC-ND 4.0). 1MB |
URL officielle: https://doi.org/10.1016/j.coldregions.2024.104249
Résumé
Ice accretion on overhead transmission line systems is a leading cause of power outages and can lead to substantial economic losses in northern regions. Therefore, accurately and rapidly predicting ice accretion on power lines is crucial for ensuring the safe operation of the power grid. This study introduces a machine learning method for predicting the ice-to-liquid ratio (ILR), an important parameter for assessing ice accretion efficiency. While estimating ILR is vital for operational forecasting, many existing ice accretion models do not include this capability. A feedforward neural network (FFNN) trained with stochastic gradient descent and various metaheuristic optimizers - specifically particle swarm optimization, grey wolf optimizer, whale optimizer, and slime mold optimizer - is employed to forecast hourly ILF. Environmental data required for training and testing the FFNN model were obtained from the Automated Surface Observing System (ASOS). A global sensitivity analysis using the Sobol index, evaluated via the coefficients of a polynomial chaos expansion, was conducted to identify the most influential input parameters. The results indicate that only four input parameters significantly contribute to the variance in the response: precipitation, temperature, dew point temperature, and wind speed. Furthermore, the FFNN model trained with metaheuristic optimizers outperformed the stochastic gradient descent approach. With the predicted , ice accumulation can be easily calculated as the product of ILR and the amount of liquid precipitation depth.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 0165232X |
Volume: | 224 |
Pages: | e104249 |
Version évaluée par les pairs: | Oui |
Date: | Août 2024 |
Nombre de pages: | 1 |
Identifiant unique: | 10.1016/j.coldregions.2024.104249 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | ice accretion, ice-to-liquid ratio, machine learning, feature selection, metaheuristic optimizer, accumulation de glace, rapport glace/liquide, apprentissage automatique, sélection de fonctionnalités, optimiseur métaheuristique |
Déposé le: | 27 juin 2024 13:02 |
---|---|
Dernière modification: | 27 juin 2024 13:02 |
Éditer le document (administrateurs uniquement)