LiveZilla Live Chat Software

Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Human-robot collaboration while Sharing Production Activities in Dynamic Environment : SPADER system

Meziane Ramy, Otis Martin J.-D. et Ezzaidi Hassan. (2017). Human-robot collaboration while Sharing Production Activities in Dynamic Environment : SPADER system. Robotics and Computer-Integrated Manufacturing, 48, p. 243-253.

[img]
Prévisualisation
PDF - Version acceptée
1MB

URL officielle: http://dx.doi.org/doi:10.1016/j.rcim.2017.04.010

Résumé

Interactive robot doing collaborative work in hybrid work cell need adaptive trajectory planning strategy. Indeed, systems must be able to generate their own trajectories without colliding with dynamic obstacles like humans and assembly components moving inside the robot workspace. The aim of this paper is to improve collision-free motion planning in dynamic environment in order to insure human safety during collaborative tasks such as sharing production activities between human and robot. Our system proposes a trajectory generating method for an industrial manipulator in a shared workspace. A neural network using a supervised learning is applied to create the waypoints required for dynamic obstacles avoidance. These points are linked with a quintic polynomial function for smooth motion which is optimized using least-square to compute an optimal trajectory. Moreover, the evaluation of human motion forms has been taken into consideration in the proposed strategy. According to the results, the proposed approach is an effective solution for trajectories generation in a dynamic environment like a hybrid workspace.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:48
Pages:p. 243-253
Version évaluée par les pairs:Oui
Date:Décembre 2017
Sujets:Sciences naturelles et génie > Génie > Génie informatique et génie logiciel
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:Trajectory generation, neural network, dynamic environment, human-robot interaction, point-to-point, geometry obstacle deformation, smooth trajectory, hybrid cell
Déposé le:02 mai 2017 21:46
Dernière modification:02 mai 2017 21:46
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630