Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Utilization of artificial neural network to analyze and predict the influence of different parameters on anode properties

Kocaefe Duygu, Sarkar Arunima, Lu Ying, Bhattacharyay Dipankar, Kocaefe Yasar S. et Morais Brigitte. Utilization of artificial neural network to analyze and predict the influence of different parameters on anode properties. Dans : 11th Australasian Aluminium Smelting Technology Conference , 6 - 11 December 2014, United Arab Emirates.

[thumbnail of Australasia2014-article 1.pdf]
PDF - Version acceptée
[thumbnail of Australasia2014-article 1.docx] Doc - Version acceptée


Carbon anode is an important component of the electrolytic production of primary aluminum. Anodes are made of dry aggregates (calcined petroleum coke, butts and recycled green and baked anodes) and the binder coal tar pitch. The production of anodes involves the mixing of the raw materials, the compaction of the paste, and the baking of green anodes to produce baked anodes with appropriate properties. An anode property is influenced by the quality of raw materials and the process conditions. It is usually difficult to correlate a given anode property with a particular constituent of a raw material or a particular processing condition because of the lack of a well-established mathematical relationship available for such a correlation. In these cases, the artificial neural network (ANN) can be a useful predictive tool to analyze the effect of a variable on a desired anode property. The analysis provides an insight into the effect of different parameters on anode properties and, in turn, helps improve the quality of anodes. In this article, the ANN approach will be discussed within the context of the analysis of the data on anode production. The results will be presented which show the application of the ANN methods to predict various anode properties.

Type de document:Matériel de conférence (Non spécifié)
Sujets:Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:artificial neural network, carbon anodes, data analysis, predictive tools
Déposé le:26 févr. 2019 00:53
Dernière modification:27 févr. 2019 00:55
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630