Bhattacharyay Dipankar, Kocaefe Duygu, Kocaefe Yasar S. et Morais Brigitte. (2017). An artificial neural network model for predicting the CO2 reactivity of carbon anodes used in the primary aluminum production. Neural Computing and Applications, 28, (3), p. 553-563.
Doc
- Version acceptée
411kB | |
Prévisualisation |
PDF
- Version acceptée
609kB |
URL officielle: http://dx.doi.org/doi:10.1007/s00521-015-2093-7
Résumé
Carbon anode is one of the key components for the electrolytic production of aluminum. It is mainly composed of calcined petroleum coke, coal tar pitch, and recycled carbon materials. The impurities in the raw materials, which are mainly by-products of different industries, influence significantly the quality of anodes. Usually, no well-known mathematical relationship exists between the various physical and chemical properties of raw materials and the final anode properties. In such situations, the artificial neural network (ANN) methods can serve as a useful tool to predict anode properties. In this study, published data have been used to show the proficiency of different artificial neural networks using the MATLAB software. The average error between the predicted and experimental values is around 6 %. The artificial neural network was also used to identify the effect of impurities such as, vanadium, iron, sodium, and sulfur on the CO2 reactivity of anodes. ANN also showed the effect of pitch percentage and coke porosity on the CO2 reactivity of anodes. The effect of CO2 and air reactivities of coke on the CO2 reactivity of anode was also studied. The predictions were found to be in good agreement with the results of other studies in the literature.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
Volume: | 28 |
Numéro: | 3 |
Pages: | p. 553-563 |
Version évaluée par les pairs: | Oui |
Date: | 2017 |
Sujets: | Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | artificial neural network, carbon anode, aluminum, vanadium, iron, CO2 reactivity |
Déposé le: | 24 avr. 2019 00:05 |
---|---|
Dernière modification: | 24 avr. 2019 00:05 |
Éditer le document (administrateurs uniquement)