Bhattacharyay Dipankar, Kocaefe Duygu, Kocaefe Yasar S., Morais Brigitte et Gagnon Marc. (2013). Application of the artificial neural network (ANN) in predicting anode properties. Light Metals, p. 1189-1194.
Doc
- Version acceptée
367kB | |
Prévisualisation |
PDF
- Version acceptée
280kB |
URL officielle: https://doi.org/10.1002/9781118663189.ch201
Résumé
Carbon anodes are a major part of the cost of primary aluminum production. The focus of the industry is to minimize the consumption of anodes by improving their quality. Therefore, the determination of the impact of quality of raw materials as well as process parameters on baked anode properties is important. The plants have a large data base which, upon appropriate analysis, could help maintain or improve the anode quality. However, it is complex and difficult to analyze these data using conventional methods. The artificial neural network (ANN) is a mathematical tool that can handle such complex data. In this work, Matlab software was used to develop a number of ANN models. Using published data, linear multi-variable analysis and ANN were applied to assess the advantages of custom multilayered feed-forward ANN. Results are presented which show a number of industrial applications.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
Pages: | p. 1189-1194 |
Version évaluée par les pairs: | Oui |
Date: | 2013 |
Sujets: | Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | feed-forward, back-propagation, regression, linear multi-variable analysis, artificial neural network |
Déposé le: | 06 mai 2019 19:36 |
---|---|
Dernière modification: | 06 mai 2019 19:36 |
Éditer le document (administrateurs uniquement)