Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Hybrid DGA method for power transformer faults diagnosis based on evolutionary k-means clustering and dissolved gas subsets analysis

Nanfak Arnaud, Eke Samuel, Meghnefi Fethi, Fofana Issouf, Ngaleu Gildas Martial et Kom Charles Hubert. (2023). Hybrid DGA method for power transformer faults diagnosis based on evolutionary k-means clustering and dissolved gas subsets analysis. IEEE Transactions on Dielectrics and Electrical Insulation, e3275119.

[thumbnail of Hybrid DGA method for power transformer faults diagnosis based on evolutionary k-means clustering and dissolved gas subsets analysis.pdf]
Prévisualisation
PDF - Version acceptée
548kB

URL officielle: http://dx.doi.org/doi:10.1109/TDEI.2023.3275119

Résumé

Considered as the heart of electrical power transmission and distribution networks, power transformers are essential part of the electricity transmission grid. Among the condition monitoring and fault diagnosis tools for these machines, dissolved gas analysis (DGA) has proven its effectiveness in their early detection and classification of faults. Up to date, many methods have been proposed in the literature for the interpretation of DGA data, classified into traditional and intelligent methods. This paper proposes a two-steps hybrid method, which uses the strengths of both methods. The approach uses the evolutionary k-means clustering algorithm based on the genetic algorithm for subset formation and subset analysis by human expertise. In the diagnostic procedure, to determine the condition of a sample, the subset to which it belongs is first identified and then the corresponding diagnostic sub-model is applied. The proposed method has been implemented with 595 DGA data, tested on 254 DGA data and validated on the International Electrotechnical Commission (IEC) TC10 database. Their performances were evaluated and compared with existing traditional, intelligent and hybrid methods. From the results obtained with the IEC TC10 database, the newly proposed approach depicts the best overall diagnosis accuracies. Indeed, the best performance is achieved with the proposed method compared to other models in the literature, with diagnostic accuracy of 98.29% compared to 88.89% of the Gouda triangle method, to 88.03% of the Hyosun Corporation gas ratio method or to 86.32% of the three ratios technique.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:1070-9878
Pages:e3275119
Version évaluée par les pairs:Oui
Date:2023
Identifiant unique:10.1109/TDEI.2023.3275119
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie électrique et génie électronique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Vieillissement de l’appareillage installé sur les lignes à haute tension (ViAHT)
Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:gases, genetic algorithms, IEC standards, dissolved gas analysis, power transformer insulation, oils, databases, gaz, algorithmes génétiques, normes CEI, analyse des gaz dissous, isolation des transformateurs de puissance, huiles, bases de données
Déposé le:07 juin 2023 18:26
Dernière modification:13 juin 2023 13:17
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630