Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Unraveling the role of non-coding rare variants in epilepsy and its subtypes with deep learning

Girard Alexandre. (2023). Unraveling the role of non-coding rare variants in epilepsy and its subtypes with deep learning. Mémoire de maîtrise, Université du Québec à Chicoutimi.

[thumbnail of Girard_uqac_0862N_11060.pdf] PDF
1MB

Résumé

The discovery of new variants has slowed down in recent years in epilepsy studies, despite the use of very large cohorts. Consequently, most of the heritability is still unexplained. Rare non-coding variants have been largely ignored in studies on epilepsy, although non-coding single nucleotide variants can have a significant impact on gene expression. We had access to whole genome sequencing (WGS) from 247 epilepsy patients and 377 controls. To assess the functional impact of non-coding variants, ExPecto, a deep learning algorithm was used to predict expression change in brain tissues. We compared the burden of rare non-coding deleterious variants between cases and controls. Rare non-coding highly deleterious variants were significantly enriched with Genetic Generalized Epilepsy (GGE), but not with Non-Acquired Focal Epilepsy (NAFE) or all epilepsy cases when compared with controls. In this study, we showed that rare non-coding deleterious variants are associated with epilepsy, specifically with GGE. Larger WGS epilepsy cohort will be needed to investigate those effects at a greater resolution. Nevertheless, we demonstrated the importance of studying non-coding regions in epilepsy, a disease where new discoveries are scarce.

Type de document:Thèse ou mémoire de l'UQAC (Mémoire de maîtrise)
Date:2023
Lieu de publication:Chicoutimi
Programme d'étude:Maîtrise en sciences cliniques et biomédicales
Nombre de pages:83
ISBN:Non spécifié
Sujets:Sciences naturelles et génie > Sciences naturelles > Biologie et autres sciences connexes
Sciences de la santé > Sciences médicales > Génétique
Sciences de la santé > Sciences médicales > Neurosciences
Département, module, service et unité de recherche:Départements et modules > Département des sciences de la santé > Programmes d'études de cycles supérieurs en sciences cliniques et biomédicales
Directeur(s), Co-directeur(s) et responsable(s):Girard, Simon
Mots-clés:deep learning, epilepsy, genetic, genomic, neurology, non-coding DNA, épilepsie, génétique, génomique, apprentissage profond, neurologie, ADN non-codant
Déposé le:07 nov. 2023 21:49
Dernière modification:08 nov. 2023 19:18
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630