Adekunle Andrew Adewunmi, Fofana Issouf, Picher Patrick, Rodriguez-Celis Esperanza Mariela et Arroyo-Fernandez Oscar Henry. (2024). Analyzing Transformer Insulation Paper Prognostics and Health Management: A Modeling Framework Perspective. IEEE Access, 12, p. 58349-58377.
Prévisualisation |
PDF
- Version publiée
Disponible sous licence Creative Commons (CC-BY-NC-ND 4.0). 1MB |
URL officielle: https://doi.org/10.1109/ACCESS.2024.3391823
Résumé
In the era of Industry 4.0, digital transformation has spurred the swift advancement of technologies, including intelligent predictive maintenance scheduling, prognostics and health management. The accurate prediction of remaining useful life plays a crucial role in these technologies as it extends power equipment’s safe operational duration and decreases the maintenance costs associated with unforeseen shutdowns. Also, the increased accessibility of data for monitoring system conditions has paved the way for the more immense adoption of machine learning models in prognostics and health management for power transformers. At the moment, with the ever-increasing demand for electricity, there is a corresponding increase in the degradation processes of power transformers. Transformers insulation system and more importantly, the paper insulation happens to be the principal part where the degradation is prominent. Therefore, an accurate prediction of the insulating paper condition through its degree of polymerization is required to guarantee the reliability of power transformers. In this regard, the predictions, reliability, and health monitoring of this power equipment can be actualized by modeling the degradation of transformer insulation paper through several machine learning frameworks. In this view, this review paper has been drafted not only to serve as a guide for researchers interested in the fields of transformer insulation system fault prognosis but also to offer insights into potential research directions as existing literature in modeling and evaluating transformer paper insulation is presented.
Type de document: | Article publié dans une revue avec comité d'évaluation |
---|---|
ISSN: | 2169-3536 |
Volume: | 12 |
Pages: | p. 58349-58377 |
Version évaluée par les pairs: | Oui |
Date: | 22 Avril 2024 |
Nombre de pages: | 1 |
Identifiant unique: | 10.1109/ACCESS.2024.3391823 |
Sujets: | Sciences naturelles et génie > Génie Sciences naturelles et génie > Génie > Génie électrique et génie électronique Sciences naturelles et génie > Sciences appliquées |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Vieillissement de l’appareillage installé sur les lignes à haute tension (ViAHT) |
Mots-clés: | insulation, power transformer insulation, oil insulation, maintenance, mathematical models, degradation, cellulose, insulation testing, polymers, prognostics and health management, isolation, isolation du transformateur de puissance, isolation de l'huile, modèles mathématiques, dégradation, tests d'isolation, polymères, pronostics et gestion de la santé |
Déposé le: | 29 avr. 2024 13:15 |
---|---|
Dernière modification: | 29 avr. 2024 13:15 |
Éditer le document (administrateurs uniquement)