LiveZilla Live Chat Software

Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Prediction of contact angle of coke-pitch system from raw material properties using artificial neural network

Sarkar Arunima, Kocaefe Duygu, Kocaefe Yasar S., Bhattacharyay Dipankar et Coulombe Patrick. (2017). Prediction of contact angle of coke-pitch system from raw material properties using artificial neural network. International Journal of Engineering Inventions, 6, (4), p. 42-52.

[img]
Prévisualisation
PDF - Version acceptée
390kB
[img] Doc - Version acceptée
608kB

Résumé

Carbon anodes used during the electrolytic aluminum production are made of aggregate material (petroleum coke, butts, and recycled green and baked anodes) and coal tar pitch. A clear understanding of chemical and physical interactions taking place during mixing would facilitate the selection of raw materials and optimization of mixing parameters that improve anode properties. It is well-known that good interaction between coke and pitch is essential for the creation of a satisfactory bond between them, and contact angle is a measure of this interaction. To optimize and predict the contact angle for a given coke/pitch pair artificial neural network (ANN) model is employed to predict the contact angles at 80 s and 1500 s of contact time. A quantitative relationship between raw material chemical properties and contact angle is established. It was found that oxygen containing functional groups are the most important factor impacting the wettability of coke by pitch. The obtained results demonstrated that the developed models are highly effective in estimating the contact angle of coke/pitch pair. The analysis provided an insight into the effect of different parameters on contact angle. In turn, this might help improve the quality of bonding between coke-pitch, consequently, anode properties.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:6
Numéro:4
Pages:p. 42-52
Version évaluée par les pairs:Oui
Date:2017
Sujets:Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Mots-clés:artificial neural network, chemical compositions, coke, contact angle, impurities, pitch, predictive tools
Déposé le:27 mars 2019 02:16
Dernière modification:27 mars 2019 02:16
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630