Bhattacharyay Dipankar, Kocaefe Duygu, Kocaefe Yasar S., Morais Brigitte et Gagnon Marc. Study of the effect of granulometry on coke bulk density using artificial neural network. Dans : Materials Science & Technology Conference and Exhibition , 27-31 October 2013, Montreal, Quebec.
Prévisualisation |
PDF
- Version acceptée
270kB |
Doc
- Version acceptée
304kB |
Résumé
Carbon anode is one of the key components in the production of primary aluminum. The important desired properties of the anodes are high density, low electrical resistivity, low air and CO2 reactivities, and high mechanical strength. The anodes consist of pitch as binder and dry aggregate (coke, butts, and recycled anodes) as filler material. Granulometry of the dry aggregate is one of the key parameters that control the anode properties. In this article, a multilayer feed forward artificial neural network with backpropagation training has been used to correlate the dry aggregate granulometry with its bulk density. Experimental bulk density values of different size fractions of the dry aggregate were used for the training of the neural network. The model helps understand and predict the effect of different dry aggregate size fractions on its bulk density. This article presents the model and the results of the study.
Type de document: | Matériel de conférence (Non spécifié) |
---|---|
Sujets: | Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique |
Département, module, service et unité de recherche: | Départements et modules > Département des sciences appliquées > Module d'ingénierie |
Mots-clés: | Carbon anodes, coke granulometry, bulk density, artificial neural network |
Déposé le: | 28 févr. 2019 22:03 |
---|---|
Dernière modification: | 01 mars 2019 01:10 |
Éditer le document (administrateurs uniquement)